C.U.SHAH UNIVERSITY Winter Examination-2020

Subject Name: Complex Analysis

Subject Code: 5SC01COA1		Branch: M.Sc. (Mathema	Branch: M.Sc. (Mathematics)	
Semester: 1	Date: 10/03/2021	Time: 11:00 To 02:00	Marks: 70	

Instructions:

Q-1

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Attempt all questions

SECTION – I

(07)

(14)

- **a**) Find the rectangular form of $z = \sqrt{3}e^{585^\circ i}$. (02)
 - **b**) Solve: $\sinh z = i$ (02)
- c) Define: Analytic function with example. (02)

d) True/False:
$$\lim_{z \to \infty} f(z) = w_0 \Leftrightarrow \lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0$$
 (01)

Q-2Attempt all questions(14)a) If $\alpha, \alpha^2, \alpha^3, \alpha^4$ are the roots of $x^5 = 1$ other than unity, find them and prove that(04)

- $(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)=5.$
- **b** Show that the set of values of $Log i^3$ is not same as the set of values of 3Log i. (03)
- c) Find real and imaginary part of $\log \cos z$. (04)

d) Prove that
$$\tanh^{-1} x = \sinh^{-1} \left(\frac{x}{\sqrt{1 - x^2}} \right).$$
 (03)

OR

Q-2 Attempt all questions

- **a**) Find the product of all roots of $\left(\frac{1+\sqrt{3}i}{2}\right)^{\frac{3}{4}}$. (04)
- **b)** Solve: $z^2 (3-i)z + 4 3i = 0$ (03)
- c) Find real and imaginary part of $\left[1 + \sqrt{-3}\right]^{1+\sqrt{-3}}$. (04)

Page 1 of 3

d) Find the value of
$$\cos^{-1}\left(\frac{3i}{2}\right)$$
. (03)

Q-3 **Attempt all questions** (14) a) State and prove necessary condition for satisfying C-R equation for any function (05)f(z). **b**) Find the conjugate harmonic function f(z) if the imaginary part of f(z) is (05) $\log\left(x^2+y^2\right)+x-2y.$ (04)c) Check C-R equations are satisfied are not for the function $f(z) = z^{\frac{3}{2}}$, if it satisfies hence find f'(z). OR Q-3 Attempt all questions (14) a) State and prove chain rule for derivatives. (07) $\left(\overline{z}^2\right)$ *,* 0

b) If
$$f(z) = \begin{cases} \overline{z} & ; z \neq 0 \\ 0 & ; z = 0 \end{cases}$$
 is not analytic at the origin although Cauchy-Riemann (05)

equations are satisfied at origin.

c) Define: Continuous function and give one example of the function which is (02)continuous but not differentiable.

SECTION – II

O-4 Attempt all questions (07) (02)

a) State Maximum modulus principle.

b) Evaluate:
$$\int_{C} \frac{e^{z}}{z^{2}-1} dz$$
, where *C* is the circle with unit radius and centre at $z = 1$. (02)

c) Find the residue of
$$f(z) = \frac{1 - e^{2z}}{z^4}$$
. (02)

d) Classify the singularity for
$$\frac{z - \sin z}{z^2}$$
 at $z = 0$. (01)

Attempt all questions Q-5 (14) (05)

- a) State and prove Cauchy's integral formula.
- **b**) Verify Cauchy's theorem for $f(z) = z^2$ taken over the boundary of a square with (05)vertices at $\pm 1 \pm i$ in counter clockwise direction.

Find an upper bound for the absolute value of the integral $\int \frac{\sqrt{z}}{z^2+1} dz$ where C is (04)**c**)

the contour given by upper half of the circle |z| = 3.

Page 2 of 3

OR

Q-5		Attempt all questions	(14)
	a)	1) Let $P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n (a_n \neq 0)$ be a complex valued polynomial of	
		degree $n(n \ge 1)$ then there exist at least one complex root z_0 such that $P(z_0) = 0$.	
	b)	Evaluate $\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-2)(z-1)^2} dz \ C : z = 3 \text{ by using Cauchy's integral formula.}$	(05)
	c)	Integrate the function $f(z) = x^2 + iy^2$ around the ellipse <i>C</i> defined by	(04)
		$x = 2\cos t$, $y = 3\sin t$, where $0 \le t \le 2\pi$.	
Q-6		Attempt all questions	(14)
	a)	State and prove Taylor's theorem.	(05)
	b)	Find the Laurent expansions for the function $f(z) = \frac{7z-2}{z(z^2-z-2)}$ in the annulus	(05)
		1 < z+1 < 3	
	c)	Evaluate: $\int_{C} z^2 e^{\frac{1}{z}} dz$; $C: z = 1$ by using Cauchy's residue theorem.	(04)
		OR	
Q-6		Attempt all questions	(14)
	a)	State and prove Laurent's series.	(08)

- **b**) Expand $f(z) = \frac{z+5}{z^2+3z+2}$ as Taylor's series about the point z = 0 upto four terms. (03)
- c) Evaluate $\int_{C} \tan z \, dz \, C : |z| = 2$ by using Cauchy's residue theorem. (03)

